China Professional 12V 24V Geared Micro Motor 25mm with Encoder Electric High Rpm High vacuum pump ac

Product Description

Product Description

 

HangZhou Xihu (West Lake) Dis. Motor Co., Ltd.

Technical Features:

  • High Power version with 6A stall current
  • Available with or without 48CPR encoder
  • Option for back shaft
  • Choice between metal brush or carbon brush
  •  

Product Description:

 

This 25mm diameter gearbox motor from HangZhou Xihu (West Lake) Dis. Motor Co., Ltd. is designed with a first stage that offers options for spur tooth or helical pinion, making it perfect for operations with limited clearance. Available in both 12V and 24V versions, this motor boasts identical parameters for seamless integration.

 

With a range of gearbox ratios from 10:1 to 499:1, this motor is compatible with various motors such as 300, 370, and more, allowing for a wide range of output speeds and torques. Additionally, it can be equipped with a 12PPR (48CPR) magnetic encoder, providing servo motor-like functionality at a cost-effective price.

 

Perfect for intelligent control products like robots and 3D printers, this gearbox motor offers versatility and efficiency. For more detailed information, refer to the HP Version with Encoder Data Sheet.

      

Model Voltage

Unit: VDC

No load speed

Unit: rpm

Noload current

Unit: mA

Stall torque

Unit: kg.cm

Gear ratio
25D370H4-EN 6V/12V 2200 rpm 550/275mA 0.58 kg.cm 4.4:1
25D370H9-EN 6V/12V 1571 rpm 550/275mA 1.25 kg.cm 9.7:1
25D370H20-EN 6V/12V 480 rpm 550/275mA 2.6 kg.cm 20.4:1
25D370H34-EN 6V/12V 285 rpm 550/275mA 4.3 kg.cm 34:1
25D370H47-EN 6V/12V 210 rpm 550/275mA 5.8kg.cm 47:1
25D370H75-EN 6V/12V 130 rpm 550/275mA 9.4 kg.cm 75:1
25D370H99-EN 6V/12V 100rpm 550/275mA 11.5kg.cm 99:1
25D370H172-EN 6V/12V 57rpm 550/275mA 18.8 kg.cm 172:1
25D370H227-EN 6V/12V 43 rpm 550/275mA 24.8 kg.cm 227:1
25D370H378-EN 6V/12V 26 rpm 550/275mA 30 kg.cm 378:1
25D370H499-EN 6V/12V 19rpm 550/275mA 30kg.cm 499:1

LP VERSION DATA SHEET

Model Voltage

Unit: VDC

No load speed

Unit: rpm

Noload current

Unit: mA

Stall torque

Unit: kg.cm

Gear ratio
25D370L4 6V/12V 1280 rpm 250/125mA 0.36 kg.cm 4.4:1
25D370L9 6V/12V 580 rpm 250/125mA 0.8 kg.cm 9.7:1
25D370L20 6V/12V 275 rpm 250/125mA 1.8 kg.cm 20.4:1
25D370L34 6V/12V 165 rpm 250/125mA 2.9 kg.cm 34:1
25D370L47 6V/12V 120 rpm 250/125mA 3.6kg.cm 47:1
25D370L75 6V/12V 75 rpm 250/125mA 6.2kg.cm 75:1
25D370L99 6V/12V 57rpm 250/125mA 8.0kg.cm 99:1
25D370L172 6V/12V 33rpm 250/125mA 12.3 kg.cm 172:1
25D370L227 6V/12V 25 rpm 250/125mA 15.8 kg.cm 227:1
25D370L378 6V/12V 15 rpm 250/125mA 18kg.cm 378:1
25D370L499 6V/12V 12rpm 250/125mA 21.5kg.cm 499:1

Detailed Photos

Product Parameters

 

Product Description:

 

Introducing the 25mm gearbox motor from HangZhou Xihu (West Lake) Dis. Motor Co., Ltd. This motor is designed with low noise and small load torque, offering a choice between plastic gear POM material for noise-free operation or metal gear for larger load torque.

 

Perfect for a wide range of applications, this motor is ideal for use in robots, toys, 3D printers, smart devices, kitchen supplies, and more. The encoder feature allows it to function as a low-cost servo motor with the same capabilities.

 

Equipped with a chip gearbox, this motor reduces gear operation clearance and minimizes swing for smoother performance. Customers can customize various parameters to suit their specific needs, with a maximum torque of 5N.m at 12V/24V and a speed range of 10 to 3000 RPM.

 

Certifications

Packaging & Shipping

Installation Instructions

Company Profile

Product development process
 

Introducing the cutting-edge Carbon Brushed Gearmotor with Quadrature Encoder by HangZhou Xihu (West Lake) Dis. Motor Co., Ltd. This gearmotor is designed for precise motion control in a wide range of applications, providing unparalleled accuracy and reliability.

Exhibitions and customers

FAQ

Q1. What about the payment way?
A1. By TT at sight or trade assurance. 30% down payment should be paid after contract is valid, 70% balance should be paid before shipment.

Q2. How long is the guarantee?
A2. We offer you high quality motors with 12 months guarantee and reply you as soon as possible within 5 hours.

Q3. If the motor some parts is broken 1 day, how can we get help from you?
A3. We will send you spare parts free of charge If they are in warranty, not including easy-broken parts. For easy-broken parts, we will only charge a cost fee.

Q4.How does your factory do regarding quality control?
A4.We have CE certificate and we have a special QC department in charge of products’ quality. If you also need other certificates, we also can help to apply.

Q5. What is your packaging?
A5. Our conventional packaging is: After doing the anti-rust treatment, wrap the plastic film around the machine and then fix the motor on the wooden bracket.

Q6. How can we check the motor before delivery?
A6. We can provide online checking when testing the motor on site. We will take and prepare detailed testing videos for your checking before the delivery. We accept third-party testing. Except above points,we will provide detailed testing report.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Driving
Casing Protection: Open Type
Number of Poles: 2
Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China Professional 12V 24V Geared Micro Motor 25mm with Encoder Electric High Rpm High   vacuum pump acChina Professional 12V 24V Geared Micro Motor 25mm with Encoder Electric High Rpm High   vacuum pump ac
editor by CX 2024-05-03

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *